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ABSTRACT

Two-dimensional materials are usually predicted to have ultrahigh thermal conductivity because of the numerous phonon normal scatter-
ings, which might cause hydrodynamic heat conduction. In addition, boundary and interface are significant in the polycrystalline structure
and material contacts. Therefore, this article investigates the thermal behaviors at the boundary and interface in phonon hydrodynamics.
Monte Carlo simulation is adopted to study the heat conduction phenomena in Poiseuille hydrodynamics and Ziman hydrodynamics. The
concept of a boundary temperature step is defined to depict the temperature decline behaviors at the boundary in steady hydrodynamic
heat conduction. Interfacial thermal behaviors can be treated as a combination of the boundary effects and phonon transmission effects,
where the interface properties can be described by the interface transmissivity and the specular reflectivity. Moreover, the inverse tempera-
ture difference at the interface is observed, which means that the heat is transported from low temperature to high temperature, implying
that the definition of temperature in phonon hydrodynamic heat conduction ought to be further investigated. Then, two theoretical models
are proposed to describe these phenomena, namely, the particle propagation model and the dual boundary flux model. The particle propa-
gation model tries to trace the propagation and evolution of phonons with simpler rules, and it finds that the heat flux reduction originates
from the backward phonons that are scattered by the normal scattering process. The dual boundary flux model divides the whole boundary
heat flux into the hydrodynamic heat flux and the diffusive heat flux, and the boundary temperature step appears in the transition between
these two fluxes. These two models are compared with the results obtained by Monte Carlo simulations.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0080688

I. INTRODUCTION

Two-dimensional materials, especially graphene, attract lots of
attention because of their excellent intrinsic physical properties,
such as mechanical and thermal characteristics.1–4 The thermal
conductivity of monolayer graphene is demonstrated to be very
high even at room temperature5 thanks to the contribution of col-
lective phonon motion.6–11 According to whether the phonon
momentum is conserved in the scattering process, phonon colli-
sions can be classified as the normal scattering process (N process)
and the Umklapp scattering process (U process).12 In the N
process, the phonon momentum is conserved after being scattered,
while in the U process, it is not. The resistance scattering process
(R process) is named to include all the scattering processes that
destroy the phonon momentum.8 If the N process dominates the
phonon transport, phonon hydrodynamic heat conduction4,6,9,13–25

appears, where many fascinating physical phenomena occur, such

as the phonon Poiseuille flow,26,27 size-dependent thermal conduc-
tivity,28,29 and second sound.30–39 More specifically, phonon hydro-
dynamic transport can be classified into the Poiseuille
hydrodynamics where the influences of the R process can be
ignored, and the Ziman hydrodynamics where the R process plays
a relatively important role besides the N process.8 Two-dimensional
materials usually have a high Debye temperature and a large
amount of flexural mode phonons, which is thought to restrict the
Umklapp scattering process in phonon collisions and strength the
normal scattering process.16,40–42 In these materials, the normal
scattering rate is usually higher than the resistance scattering rate at
not a very low temperature.8 Therefore, they have relatively large
hydrodynamic windows even at room temperature. Moreover, the
second sound37 and lattice cooling38 are reported to be observed in
highly oriented pyrolytic graphite at a temperature as high as
100 K, breaking the conventional recognition that the phonon
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hydrodynamic heat conduction can be only observed under an
ultralow temperature.

The phonon normal scattering process does not produce
thermal resistance itself but influences the thermal conductivity via
the interactions with other mechanisms, such as boundary scatter-
ing and Umklapp scattering.43 The ignorance of the normal scatter-
ing process would underestimate the thermal conductivity.12

Callaway12 derived the thermal conductivity models with
frequency-dependent relaxation times based on the dual relaxation
time approximation method, and then, Allen44 improved it with a
more rigorous treatment of phonon–phonon scattering. Alvarez
et al.45 thought that it was important to change the way to perform
the average on the scattering rates and they developed the kinetic
collective model to predict the thermal conductivity when the N
process was important. Meanwhile, the boundary scatterings
destroy the phonon momentum, also producing thermal
resistance.46–48 Poiseuille flow arises just because of the boundary
scatterings parallel with the direction of heat flow.26,27 Moreover,
the size-dependent thermal conductivity was also different from
the linear relation predicted by the ballistic heat transport.28 Lee29

demonstrated that there was entropy production in the transition
of phonon distribution from non-collective to collective, corre-
sponding to the boundary thermal resistance.

Interfacial thermal resistance49–57 plays a significant part in
non-Fourier heat conduction phenomena, such as ballistic heat
transport and hydrodynamic heat transport. Several theoretical
models are proposed to predict the boundary thermal conductance
(or so-called interfacial thermal resistance), such as the Acoustic
Mismatch Model58,59 (AMM), where the phonons at the interface
are transported in a specular behavior, and the Diffusive Mismatch
Model49(DMM), where the phonons at the interface are scattered
diffusively. Frank et al.60–62 investigated in detail the thermal resist-
ance at the solid–liquid interface via molecular dynamics and
found that the influences of solid–liquid interaction strength on the
thermal resistance were rather complex. By controlling the rough-
ness of the interface, they found that the thermal resistance was
contributed by two factors,62 the area of the solid–liquid interface
and the vibrational anharmonicity. Moreover, the interface might
alter the phonon properties in the individual materials so that the
bulk properties are not applicable anymore.55 Hua and Minnich63

solved the frequency-dependent Boltzmann transport equation
semi-analytically and depicted the heat conduction patterns from a
diffusive to a ballistic regime in this film. Hao et al.64 studied the
ballistic phonon resistance resulting from the size effect and pro-
vided a new approach to extract the effective phonon mean free
path (MFP) distribution for the in-plane heat conduction. As for
the various non-Fourier heat conduction models, Lor and Chu50,65

studied the transient non-Fourier heat conduction behaviors when
thermal waves propagated across the interface by adopting the
Cattaneo–Vernotte equation and found that the interfacial thermal
resistance would change the interfacial temperature difference but
maintain their profiles. Ho et al.66 used the lattice Boltzmann
method to investigate the heat transfer in multilayered materials
within the framework of the dual-phase-lag (DPL) heat conduction
model to show the temperature profiles after a heat pulse passed
across an interface. Liu67 analyzed metal films using the hyperbolic
microscopic two-step model and found that the hyperbolic nature

of heat in an electron gas significantly affects the thermal behaviors
at early times. Al-Nimr et al.68–70 investigated the DPL model for
composite structures and considered the influence of the thermal
boundary resistance, initial temperature, and material thermal
properties on the thermal waves that are penetrating another
media.

Phonon hydrodynamic heat transport, one of the non-Fourier
heat conduction phenomena, is also influenced by the interfaces,
which is very common in heat conduction in polycrystalline struc-
tures or composite materials. Nevertheless, little attention is paid to
the steady heat conduction in phonon hydrodynamics with interfa-
cial thermal resistance. In addition, some research studies are
focused on the cross-plane interfacial thermal conductance of
graphite. However, there is a lack of studies on the in-plane inter-
faces of two-dimensional materials, since the in-plane thermal con-
ductivity of the two-dimensional materials is far higher than that of
the cross-plane.71 The two-dimensional materials, which are seen
as the typical promising future materials, are deeply influenced by
phonon normal scattering, and interfaces are unavoidable in the
production and application of two-dimensional materials.
Therefore, a profound understanding of the steady heat conduction
phenomena and interfacial thermal resistance in phonon hydrody-
namic heat conduction is significant.

This article aims to investigate the thermal behaviors at the
interface in the phonon hydrodynamic regime. In Sec. II, the
Monte Carlo (MC) simulation algorithm to solve the phonon
Boltzmann equation is introduced. The steady temperature distri-
bution profile is depicted and the boundary temperature step is
named in Sec. III A, since the interfacial thermal resistance is
highly related to the boundary thermal resistance. Then, the
thermal behaviors at the interface are analyzed from the Monte
Carlo simulation results. In Sec. IV, two simplified theoretical
models for boundary influences and interfacial temperature charac-
teristics are introduced.

II. NUMERICAL METHODS AND SIMULATION DETAILS

A. Phonon Boltzmann transport equation

The phonon Boltzmann transport equation depicts the trans-
port behaviors of phonons in real space and phase space,

ð ð
V ,K

@f (K, x)
@t

þ v(K, x)∇f (K, x)
� �

dVdK

¼
ð ð
V ,K

Cf (K, x)dVdK, (1)

where f, K, and x are the phonon distribution function, phonon
wavevector, and spatial coordinate, respectively, and C represents
the collision operator. Many efforts are made to solve the collision
term, such as by the relaxation time approximation (RTA) and by
the full scattering matrix.72 RTA regards that the phonons
approach the equilibrium distribution after being scattered, which
is demonstrated to be relatively accurate with properly selected
parameters. Callaway12 developed the dual relaxation time approxi-
mation method to emphasize the contribution of phonon normal
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scattering in heat transport, where τN and τU are the relaxation
times of the phonon normal scattering process (N process) and the
Umklapp scattering process (U process), respectively,

Cf ¼ f0 � f
τU

þ fd � f
τN

¼ [(
τt f0
τU

þ τt fd
τN

)� f ]/τt : (2)

In Eq. (2), f0 and fd represent the equilibrium Bose–Einstein
distribution and displaced Bose–Einstein distribution, respectively,
and τt is the total relaxation time, defined by the Matthiessen rule
as τ�1

t ¼ τ�1
N þ τ�1

U . Phonon Monte Carlo (MC) simulation algo-
rithm based on the dual relaxation time approximation is adopted
to solve the phonon Boltzmann transport equation, which has been
described in detail in Ref. 20. One of the advantages is that this
algorithm reduces the number of total particles and saves the
memory and computational time.

Temperature is an important quantity in the simulation
process defined based on local equilibrium assumption. However,
in phonon hydrodynamics, the equilibrium phonon distribution is
not the equilibrium Bose–Einstein distribution, but the displaced
one, which is totally different from the diffusive heat conduction.7

In this article, the concept of temperature is used by calculating the
equilibrium temperature, which has the same thermal energy
density e(T0) with the given area, as shown in Eq. (3),

e(T) ¼
ð ð
V ,K

�hω

exp(
�hω
kT0

)� 1
dVdK ¼ e(T0): (3)

T and T0 represent the hydrodynamic temperature and the equilib-
rium temperature, respectively. They are the same when the
thermal energy densities are the same. In this way, the hydrody-
namic temperature becomes a label of thermal energy density.
Therefore, sometimes in this article, thermal energy density is used
instead of temperature to depict the thermal behaviors in phonon
hydrodynamics, where Eq. (3) is assumed. When the temperature
change is small enough, it is regarded that there is a linear relation-
ship between the thermal energy density difference ΔE and the
temperature difference ΔT.

B. Scattering process

The dual relaxation time approximation method is used to
solve the collision term in Eq. (1) for the Monte Carlo simulations,
as Eq. (2) shows. When the N process plays a major part, the
phonon distribution approaches the displaced Bose–Einstein distri-
bution while the U process leads to the equilibrium Planck distri-
bution, where 1/τt = 1/τU + 1/τN. Thus, another parameter is
defined to study the coupled effect of the N process and the U
process, namely, resistance scattering probability M. It is a simula-
tion parameter, meaning the probability of phonons to be scattered
by the resistance scattering process. In this article, the resistance
scattering process (R process) includes the Umklapp scattering
process, defect scattering, isotopic scattering, and so on, except for
boundary resistance, since boundary resistance is specifically
studied. The definition of M comes from the ratio of the relaxation

times for the N and R processes,

M(ω) ¼ 1
τR(ω)

/(
1

τN (ω)
þ 1
τR(ω)

): (4)

As the relaxation times τN and τR are frequency dependent, M
is frequency dependent as well.

In the MC algorithm, the phonons in the material are
sampled and traced until they end their lives.73 The stochastic
method is adopted to derive the phonon life and travelling distance
from τt. The computer gives a random number R in the range from
0 to 1 and the travelling distance l is

l ¼ �λt ln (R), (5)

where

λt ¼ τtvg (6)

is set to be the mean free path of phonons. The calculation regime is
divided into several grids to count the energy and momentum. Since
this algorithm adopts the concept of energy particles, instead of the
phonon particles, the conservation of particle number is equal to
the conservation of thermal energy. If the energy particles are
judged to be scattered in the R process, their new properties are
determined by the equilibrium Bose–Einstein distribution.
Otherwise, their new properties are given from the displaced Bose–
Einstein distribution. More algorithm details can be found in
Ref. 20. In this way, the hydrodynamic heat conduction is simulated.

C. Boundary conditions and interface properties

As mentioned above, two kinds of boundaries are analyzed in
this article, namely, the adiabatic boundary and the emitting boun-
dary. Since the adiabatic boundary has no interaction with the
external thermal energy, it can only reflect the phonons that meet
the boundary. The emitting boundary, also known as the absorbing
boundary in MC simulation, gives external thermal energy import
based on the temperature or the heat flux. The boundary emits
phonons at a given rate and absorbs all the phonons that arrive.
The direction distribution of these phonons follows the Lambert
distribution,

I ¼ I0 cos θ, (7)

where I represents the energy density. Lambert distribution means
that the phonons are in thermal equilibrium. Thus, in the phonon
hydrodynamic regime, the transition from equilibrium Bose–
Einstein distribution to displaced equilibrium distribution can be
observed. The probability density function Pω for phonon fre-
quency can be written as

Pω(T) ¼ �hω[f0(ω, T)� fref (ω, T)]D(ω)Ð
K
�hω[f0(ω, T)� fref (ω, T)]D(ω)dω

, (8)

where fref is the reference equilibrium state, chosen according to the
circumstance conditions.
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Two parameters are adopted to characterize the interfacial
thermal properties,57,74 namely, the interface transmissivity t and
the boundary specular reflectivity s. When phonons meet with the
interface, they might be reflected or transmitted directly. The pro-
portion of the phonons that could pass through the interface is
named as the interface transmissivity t. When t = 0, all the
phonons are reflected to the original material. When t = 1, the
interface does not exist and all the phonons can propagate into the
other material. The interface transmissivity for phonons from
material I to II is t12, and the transmissivity in the opposite direc-
tion is t21. If I and II are the same materials, according to the
detailed equilibrium, it can be inferred that

t12 ¼ t21: (9)

Boundary specular reflectivity s represents the percentage of
the phonons at the boundary that are reflected according to
Fresnel’s law, and it is dependent on the boundary roughness. If
the boundary is smooth, the specular reflectivity is unity and all the
phonons are reflected with the same phonon momentum parallel
with the boundary. As for the phonon momentum perpendicular
to the boundary, it is inverse. The phonon frequency follows the
equilibrium Bose–Einstein distribution. If the boundary is coarse,
the specular reflectivity is 0 and all the phonons are re-emitted
according to the Lambert distribution. The polar angle of coarse
boundary θ is determined by

cos θ ¼ 1� 2R (10)

and R is a random number given by the computer. In this way, the
boundary heat flux parallel to the coarse boundary equals zero and
the phonon Poiseuille flow comes into being.7 Different sides of the
interface have different boundary reflectivities s1 and s2, and here,

they are assumed to be the same, namely, s1 = s2. Both the reflected
phonons and passing phonons have new frequencies, derived from
the equilibrium Bose–Einstein distribution. In the simulation
process, a random number Rt is given by the computer; if Rt < t,
the phonon would pass through the interface. Otherwise, it is
reflected. Then, another random number Rr is given. If Rr < r, the
phonon will obey Fresnel’s law, namely, the reflection law and the
refraction law. Otherwise, the phonon wave vector is redistributed
based on the Lambert distribution.

The MC simulation in this article has been verified. It can be
shown from Fig. 1 that our results agree with previous research
studies.29,47 The semi-analytical solution is derived from reference.
The rectangular is the result of Lee’s algorithm and the asterisk is
from our model. The Debye model is adopted in this simulation
and the Debye temperature of the given material is set to be 1200 K
and the initial temperature is 100 K. The relaxation time is 10−10 s
and the phonon group velocity is 104 m/s. Here, the width is finite
while the length is infinite. The infinite length is achieved in the
simulations by setting the length to be much larger than the width.

D. Calculation regime

The boundary behaviors in phonon hydrodynamics are inves-
tigated first, and then, the interfacial thermal behaviors between
two individual nanofilms are analyzed, as shown in Fig. 2. When
phonons meet the interface between the two nanofilms with the
same material, interfacial interactions will reflect some phonons
and allow the others to pass through. Two kinds of boundaries are
analyzed here, namely, the emitting boundary and the adiabatic
boundary. Emitting boundaries mean these boundaries with exter-
nal energy input and output, including the isothermal boundary
and heat flow boundary. Adiabatic boundaries have no energy
exchange with the outside circumstance. However, it influences
heat conduction by absorbing and reemitting phonons. If the
boundaries are coarse, the phonon momentum would be destroyed,
resulting in boundary thermal resistance.

Two individual cases based on the Debye model are analyzed
in this article to study the boundary thermal resistance and interfa-
cial thermal resistance. The MC algorithm is established in two-
dimensional space. In case 1 [Fig. 2(a)], a nanofilm with finite
length and infinite width is considered. Two temperature boundar-
ies are set at the end of the lengths, T1 and T2. If T1 > T2, the heat
flux flows from the left to the right and boundary resistance

FIG. 1. Thermal conductivity in phonon hydrodynamic heat transport of the
nanofilm with finite width and infinite length.

FIG. 2. Schematic diagrams for the two simulation cases. (a) Heat conduction
with finite length and infinite width; (b) heat conduction through the interface
between two individual nanofilms with finite length and infinite width.
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appears. If there is no specific demonstration, the regime length is
set to be 5000 nm and the initial temperature is 200 K. In case 2
[Fig. 2(b)], two nanofilms of the same material contact each other,
constructing the interface, which determines whether the phonons
would pass through or be reflected. The total length is 5000 nm
while the interface is placed at the middle. The width boundaries
are set to be periodic to simulate the infinite boundary condition.
Since the Debye model is adopted, the phonon direction distribu-
tion is regarded as continuous and the direction of the wave vector
is compatible with the velocity direction. Therefore, the U process
distributes the phonon velocity direction evenly while the N
process has a preferable direction along with the direction of drift
velocity ud. In all the figures in this article, the total length
L = 5000 nm is normalized to 1 to make the expression simpler.

III. INTERFACIAL BEHAVIORS IN STEADY POISEUILLE
HYDRODYNAMIC HEAT CONDUCTION

For simplification, if there is no specific declaration, in this
article, the hydrodynamic heat conduction means the Poiseuille
hydrodynamic heat conduction, where the phonon normal scatter-
ing process is dominant and the phonon resistive scattering process
can be ignored. In this section, the boundary effect and the interfa-
cial behaviors in steady hydrodynamic heat conduction are
depicted by the Monte Carlo simulations.

A. Boundary temperature step and entropy analyses

The temperature distribution in a nanofilm with finite length
in phonon hydrodynamics has been calculated by Lee29 and Liao.46

Even though the N process causes no thermal resistance, near the
boundary there are boundary temperature jump and boundary tem-
perature step, which describes the temperature distributions
between the temperature boundary and the middle part of the
medium, as shown in Fig. 3. It can be found that the boundary
influences, which result in the temperature gradient, decrease as the

distance from the boundary becomes larger. In the middle part of
the medium, the boundary effects are negligible and there is no
temperature gradient. Hence, parts A and C in Fig. 3 are called
boundary temperature steps, both of which reflect the nonlinear
temperature distribution related to the boundaries. Here, the
concept of the boundary temperature step difference is used to
describe the temperature difference between the temperature at the
inner side of the boundary and the steady temperature in the
middle part of the medium, denoting the step height, as shown in
Fig. 3, which is plotted by Lee.29 The given boundary temperature
is the temperature at the outer side of the boundary, and the differ-
ence between which and the temperature at the inner side of the
boundary is called boundary temperature jump.

The normal scattering process leads the phonons to the dis-
placed Bose–Einstein distribution fd,

fd ¼ 1

exp
�hω
kT

� �hK � ud
kT

� �
� 1

, (11)

where ω, K, and ud represent the phonon frequency, phonon wave
vector, and the phonon drift velocity, respectively. Based on the
expression [Eq. (11)], the phonons have a preference direction after
being scattered, which is along with the direction of original
momentum. In this way, the phonon momentum is conserved. The
drift velocity ud, which has been demonstrated to be the same in all
phonon branches,7 influences both the phonon frequency and
phonon wave vector. Here, several normalized quantities are
defined to make the expression clearer. They are the nondimen-
sional frequency mω, which is the function of frequency ω and tem-
perature T, and the drift velocity ratio r,

mω ¼ �hω
kT

, (12)

r ¼ ud
vg

����
����: (13)

vg is the phonon group velocity. When the drift velocity ratio r and
nondimensional frequency mω are small enough (r < 0.2, m < 5,
empirically), the distribution Eq. (11) can be linearized with ignor-
able error as

fd ¼ 1

exp
�hω
kT

� �
� 1

þ
exp

�hω
kT

� �

exp
�hω
kT

� �
� 1

� �2 �hK � ud
kT

: (14)

Figure 4 compares the probability distribution function pre-
dicted by Eqs. (11) and (14), where the control variate method has
been used. In Fig. 4(a), the drift velocity ratio r is 0.05 and the mω

varies at 0.1, 0.5, 1.0, and 5.0. When mω = 5.0, the profiles predicted
by Eqs. (11) and (14) appear to deviate. In Fig. 4(b), the nondimen-
sional frequency mω is set to be 1, and the drift velocity ratio r
varies at 0.001, 0.01, 0.05, 1.0, 2.0, and 3.0.

FIG. 3. The steady temperature profile in phonon hydrodynamic heat conduc-
tion for a nanofilm with finite length.29
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The phonons following the Bose–Einstein distribution propa-
gate in all directions evenly and the total phonon momentum is
zero. As shown in Fig. 4, the displaced Bose–Einstein distribution
has a preference direction along with the drift velocity to make the
total momentum conserved. These velocity directions are analyzed
to reveal how thermal boundary resistance in phonon hydrody-
namics is produced. It has been recognized that boundary resist-
ance exists due to phonon distribution transition from the
equilibrium Bose–Einstein distribution to the displaced one.

In a two-dimensional nanofilm with finite length and infinite
width, two temperature boundaries with finite temperature differences
are adopted. The higher temperature is 201 K and the lower tempera-
ture is 200 K. The regime length is set to be 5000 nm, and the gray
model gives a uniform mean free path (MFP) for the N process.
When the system comes to a steady state, the temperature distribution
is plotted in Fig. 5. As the temperature is defined as the function of
local energy density, the energy distribution has a similar tendency
with temperature profiles. In Fig. 5, three kinds of phonon MFPs are
considered, λN = 500, 1000, and 1500 nm, making Kn to be 0.1, 0.2,
and 0.3, respectively. Kn is the ratio of the phonon MFP with respect
to the characteristic length and is characterized by the MFP of the U
process and the N process, respectively,

KnU ¼ λU
L
, (15)

KnN ¼ λN
L
: (16)

It was thought that there was no thermal resistance in the N
process, so the temperature gradient was not supposed to exist.

However, it is demonstrated to be untrue because thermal resist-
ance arises from the phonon distribution transition from non-
collective to collective. Boundary temperature steps appear.
However, ballistic heat conduction fails to describe this kind of
phenomenon, as shown in Fig. 5. In the middle part of the nano-
film, there is no temperature gradient, and therefore, there is no
thermal resistance in the middle part. In the area near the boun-
dary, a gradually flattening slope exists. The temperature step dif-
ference at the left boundary is ΔT1 and that at the right boundary
is ΔT2, as shown in Figs. 5 and 6. At the high temperature boun-
dary, the temperature step difference ΔT1 is positive, while at the
low temperature boundary, the temperature step difference (−ΔT2)
is negative. The absolute values of these two temperature step dif-
ferences are not totally the same, but they all have relationships
with Kn. Figure 6 shows the temperature profiles under heat flux
boundaries, where the flux q0 is determined as

q0 ¼ 0:25 ρCV (T1 � T2)vg : (17)

In Eq. (17), 0.25 is the shape factor. At different MFPs, the left
temperature slopes ΔT1 are almost the same, while the right tem-
perature slopes ΔT2 are different. At the same time, the absolute
values of ΔT1 and ΔT2 are not the same, either. Another observa-
tion is about the boundary penetration length. The penetration
length of the temperature step is more than one MFP λN, as shown
by the imaginary line. When Kn = 0.3, the whole nanofilm has
been influenced. It implies that boundary influences generally exist
in phonon hydrodynamics, no matter under temperature boundary
or heat flux boundary.

FIG. 4. Comparisons of the probability distribution function predicted by Eqs. (11) and (14) at different nondimensional frequency mω and drift velocity ratio r. (a) r = 0.05
and the nondimensional frequency mω varies between 0.1 and 5.0. (b) mω = 1 and the drift velocity ratio r varies between 0.001 and 0.3.
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B. Phonon drift velocity and the generation of
hydrodynamic boundary resistance

Drift velocity is an important quantity in phonon hydrody-
namics.10 As mentioned in Sec. III A, phonons in the hydrody-
namic regime have an uneven velocity direction distribution in the
momentum space. The velocity direction of phonons is represented
by the polar angle and azimuth angle, as shown in the reference.
Here, the cosine values of the phonon polar angle are plotted in
Fig. 7. An obvious difference in the angle distribution between cos
θ > 0 and cos θ < 0 can be found near the boundary, where x
denotes the position. When x = 0.01, the right part in Fig. 7(a) is
nearly even, while the left part is linear and a linear equation is
derived based on the least square method. When x = 0.2 [Fig. 7(b)],
the cos θ > 0 part gradually matches the equation with several

fluctuations and the left part is still linear. In the middle part
x = 0.5 [Fig. 7(c)], the phonon velocity direction distribution
matches well with the given linear equation, giving a definite drift
velocity. It can be found that the ratio of the drift velocity with
respect to the phonon group velocity is 0.0091, much smaller than
0.1. It is also demonstrated that the linearization of the displaced
Bose–Einstein distribution is proper in this case. At the right boun-
dary, x = 1.0 [Fig. 7(d)], the left part of the distribution is even
while the right part is linear, just the other way around, compared
with x = 0.01. From the view of phonon propagation, when cos
θ > 0 (polar angle θ > 0), the phonons propagate from the left to
the right and vice versa. At the left boundary, the phonons from
the left to the right follow the equilibrium Bose–Einstein distribu-
tion, while those from the right to the left obey the displaced Bose–

FIG. 5. When the temperature boundary is adopted, the steady temperature profile is depicted for the nanofilms with finite length in phonon hydrodynamics at different
mean free paths, (a) λN = 500 nm, (b) λN = 1000 nm, (c) λN = 1500 nm. (d) is the combination of the previous three figures.
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Einstein distribution. When phonons are scattered, the steady dis-
tribution changes from non-collective distribution to collective one.
Therefore, the phonons that propagate from the right to the left at
x = 0.01 follow the collective distribution. Considering these charac-
teristics, the left and the right parts in phonon direction distribu-
tion might have different drift velocities individually, which is
denoted as uleft and uright, respectively. Then drift velocity distribu-
tions are plotted in Fig. 8.

In Fig. 8, as discussed before, uright at x = 0.0 is zero and uleft
at x = 1.0 is also zero. As for uright, with the increasing of x, the
drift velocity gradually increases and becomes nearly constant at
last. When x approaches 1.0, the drift velocity slightly rises. Similar
principles are also satisfied for uleft. This kind of representation is

inconvenient. They are only used to explain the transition process
from non-collective to collective. Two kinds of revised drift veloc-
ities are analyzed.

The first kind of drift velocity u1 is defined based on the
weighted average of uleft and uright,

u1 ¼ pleftuleft þ prighturight : (18)

pleft and pright are the proportions of the phonon energy of the left
part and the right part in the entire energy regime, respectively. In
the second way, the drift velocity can be defined directly as the

FIG. 6. When the heat flux boundary is adopted, the steady temperature profile is depicted for the nanofilms with finite length in phonon hydrodynamics at different mean
free paths, (a) λN = 500 nm, (b) λN = 1000 nm, and (c) λN = 1500 nm. (d) is the combination of the previous three figures.
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average of uleft and uright,

u2 ¼ uleft þ uright
2

, (19)

denoted as u2. These distributions are plotted in Fig. 9(a), which
agree with Lee’s results.29 It can be found that u1 is approximately
equal to u2 due to the small drift velocity. Therefore, this article
used u1 to represent the total drift velocity ud. The drift velocity
has a nonzero value at the boundary and the maximum value
appears in the middle part. The drift velocity ratio distributions
with different Knudsen numbers are plotted in Fig. 9(b). Their

profile shapes are similar. The maximum ratios at different
Knudsen numbers are the same. However, when Kn is lower, the
boundary velocity ratio climbs faster to the maximum and goes
down later, corresponding to the higher scattering rate. In addition,
at the boundary, the higher Kn corresponds to the lower velocity
ratio.

Following the method adopted by Lee,29 the entropy produc-
tion caused by the N process can be calculated by

_Sscatt ¼ 1
TNV

ð ð
V ,K

w(K, x) _f scatter(K, x)dVdK, (20)

FIG. 7. The probability distribution function of the phonon velocity directions along with polar angle θ at different positions, (a) x = 0.01, (b) x = 0.2, (c) x = 0.5, and (d)
x = 1.0.
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where N, V, and T represent the number of phonon states, the
volume, and the temperature, respectively. w, which has the
dimension of energy, is defined by the deviation between the
real phonon distribution f and the equilibrium Bose–Einstein
distribution f0 as

f (K, x) ¼ f0 � w
@f0

@(�hω)
: (21)

According to Lee,29 the entropy production is related to
thermal resistance as

R ¼ T2 _S

_Q
2 : (22)

In phonon hydrodynamics, the equilibrium state becomes the
displaced Bose–Einstein distribution. The relaxation time approxi-
mation method is then adopted to depict the time evolution of
phonon scattering distribution when the resistance scattering
process is ignored, as

_f scatter ¼
f � fd
τN

: (23)

The phonon distribution can be divided into two parts,
according to the principles in Fig. 7, namely, the positive part f+
denoting the phonons that propagate along with x coordinate and
the negative part f− denoting the phonons in the opposite direction.

Therefore, Eq. (23) can be rewritten as

_f scatter ¼
( f þ � fd þ )þ ( f��fd�)

τN
: (24)

Then, the entropy production can be obtained by substituting
Eq. (24) into Eq. (20),

_Sscatt ¼ 1
TNVτN

" ð ð
V ,Kþ

f(K, x)(fþ�fdþ)dVdK

þ
ð ð
V ,K�

f(K, x)(f��fd�)dVdK

#
: (25)

Entropy production arises in phonon transition from non-
collective to collective, as shown in Eq. (25). If f+ = fd+ and f− = fd−,
no thermal resistance will be produced. On the contrary, if the orig-
inal phonon distribution does not follow the displaced Bose–
Einstein distribution, thermal resistance is produced. The boundary
scatters and emits the phonons based on the equilibrium Bose–
Einstein distribution, and after the redistribution of the normal
scattering process, the phonon distribution approaches the dis-
placed one. As plotted in Fig. 7, the phonon distributions in the
steady hydrodynamic heat conduction at different positions do not
totally satisfy the displaced Bose–Einstein distribution. Therefore,
the hydrodynamic thermal resistance is attributed to the boundary
effect. In the middle part of the media, the phonon distribution
keeps unchanged, as shown in Fig. 7(c), thus producing no thermal
resistance.

Apart from the aspect of velocity direction distribution, the
thermal resistance in the phonon hydrodynamic regime can be
understood in other ways. From the view of particle propagation,
phonons are emitted from the boundary into the inner, and if none
of them are scattered, all the phonons would arrive at the opposite
boundary without any loss, which belongs to the ballistic heat
transport. However, when the scattering process occurs, some
phonons turn back to the original boundary and the others con-
tinue to propagate forward. These phonons that turn back lead to
the heat flux reduction in phonon hydrodynamic heat conduction
and generate the thermal resistance. It ought to be noticed that
phonons come from both the high temperature and the low tem-
perature, but the higher temperature boundary has more backflow
phonons than the lower temperature boundary, resulting in the net
backflow heat flux to the high temperature boundary.

When the length of the regime L is large enough, the heat flux
and boundary temperature difference do not change with length
anymore, causing invariant thermal resistance. Thus, the thermal
conductivity k, which is related to thermal resistance R as k = L/R
in phonon Poiseuille hydrodynamic heat conduction might be
length dependent. Here, two kinds of thermal conductivity are ana-
lyzed, namely, the hydrodynamic thermal conductivity and the
effective thermal resistance. At the same time, two kinds of thermal
resistance are named as hydrodynamic thermal resistance and
effective thermal resistance. Here, the high- and low-temperature
boundaries are set as T1 and T2, and the temperatures of the left

FIG. 8. Individual drift velocity of the left part uleft and right part uright of the
velocity direction distribution.
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and the right sides for this regime are Tleft and Tright, respectively.
It is known that T1 > Tleft and T2 < Tright. The heat flux is q and the
nanofilm length is L. Due to phonon distribution transition from
the equilibrium Bose–Einstein distribution to the displaced one,
boundary temperature step differences exist, such as ΔT1 and ΔT2.
Therefore, the hydrodynamic thermal conductivity is defined as

kh ¼ qL
(Tleft � Tright)

, (26)

and the effective thermal conductivity is expressed as

ke ¼ qL
(T1 � T2)

: (27)

Another way to represent the thermal behaviors at the boun-
dary is to adopt the thermal resistance. The effective thermal resist-
ance is defined similar to the effective thermal conductivity,

Re ¼ (T1 � T2)
q

, (28)

while the hydrodynamic thermal resistance is

Rh ¼
(Tleft � Tright)

q
: (29)

The effective thermal resistance can be regarded to consist of
two boundary resistances and one hydrodynamic thermal

resistance,

Re ¼ Rleft þ Rright þ Rh

¼ T1 � Tleft

q
þ Tleft � Tright

q
þ Tright � T2

q
¼ T1 � T2

q
: (30)

The hydrodynamic thermal resistance and the effective
thermal resistance in phonon hydrodynamics are calculated in the
range from KnN = 0.1 to KnN = 1.6. The hydrodynamic thermal
conductivity is higher than the effective thermal conductivity. The
MFP of the N process is changed so that different Knudsen
numbers are obtained. It reads from Fig. 10(a) that the hydrody-
namic thermal conductivity decreases when Kn < 0.5 and then
increases with the growth of MFP. When Kn is small, the mean
free path has few influences on the heat flux, but the increment of
MFP leads to a larger boundary temperature step difference. When
the Knudsen number is large, ballistic heat transport plays a non-
negligible role in heat conduction. More ballistic phonons appear
as the MFP increases. In the other way around, the effective
thermal conductivity increases when Kn goes up, although the
effective thermal conductivity varies in a small range.

C. Thermal resistance in Ziman hydrodynamic heat
conduction

When the characteristic length of the regime and the MFPs
satisfy the relation, λN < λR < L, heat transport will fall into the
Ziman hydrodynamic regime, where the resistance scattering
process also influences the heat flux and temperature. A one-
dimensional heat conduction problem is considered, whose sche-
matic diagram is plotted in Fig. 2(a). The coupling effects are com-
pared with those cases where the N process is ignored, as shown in
Fig. 11. When the N process is ignorable, it belongs to the ballistic-

FIG. 9. (a) The two kinds of drift velocity distributions u1 and u2 along with the length. (b) The drift velocity distributions along with the length at different Knudsen
numbers.
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diffusive regime. The temperature profile is linear along with the
length. In the Ziman hydrodynamic regime, KnN and KnU are
defined as the ratio of MFP of the N process and the U process
with respect to the characteristic length, respectively, as Eqs. (15)
and (16). The boundary temperature step can be found at the two
boundaries of the nanofilm. In the middle part, the temperature
distribution is linear, similar to that predicted by diffusive heat con-
duction. As for the heat flux distribution profile, the N process
increases the proportion of phonons that are reflected to the boun-
dary, decreasing the total heat flux.

In Fig. 12, the regime length is set to be 5000 nm and the
mean free path of the N process is 500 nm. The MFPs of the U
process vary from 500 to 8000 nm, falling from the ballistic-
diffusive regime to the phonon hydrodynamic regime. The temper-
ature profile is linear when λU is short, and it becomes curved with
the increase in λU. When the MFP of the U process is comparable
to that of the N process, the U process dominates the heat conduc-
tion and the N process is covered up. The existence of the U
process brings thermal resistance to the heat transport and leads to
a temperature gradient. The patterns in Figs. 11 and 12 resemble
the analytical predictions by Hua and Minnich.63

The influences of the N process can be observed from the
comparisons of the temperature profiles and the thermal conduc-
tivity between the pure U process and the coupling process of N
and U, as shown in Figs. 11 and 13. When λU is comparable to λN
(Kn = 0.1), these two temperature profiles are much similar and the
U process dominates the whole scattering process. As λU increases,
they separate with nearly the same high temperature Tleft and dif-
ferent low temperatures Tright. It is found that the coupling process
has a smaller temperature difference ΔT (ΔT = Tleft− Tright). The
hydrodynamic thermal conductivity and the effective thermal con-
ductivity are analyzed here, and it is found that the coupling
process has higher thermal conductivity. It implies that the N

process can enhance thermal conductivity. It is demonstrated that
the displaced Bose–Einstein distribution leads to direction-
preferable phonon wave vector distribution, which could decrease
the backward phonons and enhance the heat flux. Therefore, the N
process increases the thermal conductivity, both the hydrodynamic
thermal conductivity and the effective thermal conductivity, as
plotted in Fig. 13.

D. Hydrodynamic interfacial resistance

The interfacial effects on thermal resistance are complex as
demonstrated by Frank.62 Here, the interface transmissivity t and
specular reflectivity s are adopted to describe the interfacial interac-
tions. When phonons meet the interface, some are reflected and
the others pass through the interface. The calculation schematic
diagram is plotted in Fig. 2(b). When the interface transmissivity t
is equal to 1 and the specular reflectivity s = 0, the steady tempera-
ture distribution profiles are shown in Fig. 14.

In both the nanofilms, the boundary temperature steps appear
in the typical hydrodynamic temperature profiles. Also, in Fig. 14(a)
at the interface, although the heat flux flows from left to right, the
temperature difference at the interface is positive. That is to say,
heat transports from lower temperature to higher temperature. It is
impossible in the framework of Fourier’s law. However, it is the
hydrodynamic heat conduction and the conventional definition of
temperature that fails. Thus, the value of temperature is a measure-
ment of local energy density. In the following research studies, it is
found that the inverse temperature gradient gradually disappears
with increasing specular reflectivity, s. When s = 1.0, all the
phonons follow Fresnel’s law. In this case, when the two nanofilms
are made of the same material, phonons keep their original fre-
quency and direction so that the interface disappears. The tempera-
ture difference between the two nanofilms at the interface is called
interfacial temperature difference.

FIG. 10. (a) Hydrodynamic thermal resistance and effective thermal resistance of the given material with finite length at different Knudsen numbers. (b) Hydrodynamic
thermal conductivity and effective thermal resistance of the given material with finite length at different Knudsen numbers.
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When the interface transmissivity t changes from 1.0 to 0.0,
the proportion of phonons that can pass through the interface goes
down. t = 0.0 means that no phonons could get through the inter-
face, implying that the boundary is adiabatic. In addition, the tem-
perature differences at both sides of the interface are plotted in
Fig. 15, which shows that when the interface transmissivity t
increases, the temperature difference goes down linearly. The
energy density in the left nanofilm changes a little while that in the
right nanofilm grows with the increasing interface transmissivity t,
resulting in the change of interface temperature difference.

Boundary specular reflectivity is also an important parameter
in interfacial thermal resistance. When s = 0, all the phonons are
redistributed based on equilibrium Bose–Einstein distribution for

frequency and Lambert distribution for velocity. When s = 1.0, all
the phonons keep their original properties. With constant transmis-
sivity t, the change of s mainly influences the profile shape, as
shown in Fig. 16, where the two figures have transmissivity t = 0.1
and t = 0.5, respectively and the specularity s varies from 0.1 to 0.9.
The interface temperature difference goes up as the specular reflec-
tivity increases and, finally, reaches zero at s = 1.0. At the same time,
s also influences the steady state energy density at both nanofilms.
When s goes up, the energy densities in both nanofilms increase,
and the left part is influenced more, just the other way around with
respect to interface transmissivity t. The energy difference at the
interface grows as well when s goes up. This tendency is compatible
with the tendency of temperature difference at the interface.

FIG. 11. Comparisons of the temperature profiles in the nanofilms between ballistic-diffusive and Ziman hydrodynamic heat transport at different Knudsen numbers of the
U process. (a) KnU = 0.1, (b) KnU = 0.2, (c) KnU = 1.0, and (d) KnU = 2.0.
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Figure 17 shows the variance of temperature differences at the
interface along with specular reflectivity s at different interface
transmissivity t, t = 0.1, 0.3, 0.5, 0.7, and 0.9. The discrete points
represent the MC simulations and the solid lines denote the fitting
functions. It is found that with increasing specular reflectivity,
the temperature differences increase linearly. When s approaches 1,
the temperature difference arrives at the maximum. In addition, the
reduction in transmissivity results in higher temperature difference,
as fewer phonons can get through the interface and larger thermal
resistance is produced. The data points are fitted in linear lines, the
expressions of which are also denoted in Fig. 17.

The interfacial thermal resistance at these cases Ri is
calculated as

Ri ¼ q
(Tþ�T�)

, (31)

where T+ and T− represent the temperature of the right and left
sides at the interface, respectively. The principles for the thermal
resistance and thermal conductivity along with phonon interface
transmissivity and specular reflectivity are plotted in Fig. 18(a).
Different shapes of the points represent different interface trans-
missivities. With the increasing specular reflectivity, thermal resist-
ance increases as well and approaches a constant value. When
specular reflectivity s is larger than 0.6, thermal resistance nearly
keeps constant. When the transmissivity t = 0.1, the thermal resist-
ance increases at first and then decreases, which is because specular
reflectivity has larger influences on interface temperature difference
at t = 0.1. In addition, this figure also reveals the relation between
transmissivity and thermal resistance. Larger transmissivity t leads
to lower thermal resistance corresponding to the difficulty of
phonons passing through the interface.

Since temperature is ill-defined in phonon hydrodynamics, it
is not proper to discuss the interfacial thermal resistance in conven-
tional definition. Thus, effective thermal conductivity is analyzed as
calculated by

kei ¼ qL
(T1 � T2)

: (32)

The combined structure includes two nanofilms with finite
length and infinite width, as shown in Fig. 2(b). The resistance con-
sists of two boundary resistances (left and right boundary) and one
interfacial thermal resistance, and they are plotted in Fig. 18(b).
The length of each nanofilm is 2500 nm as the total regime length
is 5000 nm. It is obvious that high interface transmissivity causes a
larger heat flux and enhances the thermal conductivity. Specular
reflectivity also influences the thermal conductivity slightly, which
increases with s going up. The specular reflectivity s reflects the
ability of the interfacial phonons to conserve their momentum.
When the specular reflectivity s is higher, less phonon momentum
is destroyed, thus enhancing heat transport.

The existence of the interface not only increases the backward
phonons, but also influences the thermal conductivity by the inter-
actions with phonons, such as in the way of interface transmissivity
t and specular reflectivity s.

IV. THEORETICAL MODELS

In this section, two theoretical models are proposed to depict
the temperature distribution in steady heat conduction in phonon
hydrodynamics. They are the particle propagation model and the
dual boundary flux model. In the particle propagation model, the
particles are scattered and counted in simpler principles, and it
gives a clear explanation for the heat flux reduction phenomenon.
Moreover, the dual boundary flux model classifies the heat flux
into two categories—the hydrodynamic heat flux and the diffusive
heat flux. It gets better accuracy for temperature distribution in the
steady heat conduction process. Then, the predictions of these two
models are compared in Sec. IV C. The interfacial temperature dif-
ference and interfacial thermal resistance are depicted by the dual
boundary flux model in Sec. IV D.

A. Particle propagation model

The particle propagation model traces the emitting and scat-
tering processes of the phonon particles from the boundary and
gives these phonons simpler scattering rules.75 This model can be
used to explain the phenomenon of heat flux reduction in hydrody-
namic heat conduction. There are three assumptions for the parti-
cle propagation model. (M1.1) The lifetime of each phonon is
assumed to be constant. Different phonons are supposed to have
different lifetimes, but when their lifetimes are set to be equal, they
will travel the same distance before being scattered. In other words,
if all the phonons are scattered at the same time, then the next
time, they would be scattered at the same time, as well. (M1.2) The
drift velocity ud along with the whole nanofilm is regarded to be
the same. This assumption has some problems near the boundary,
as demonstrated in Sec. IV A. Nevertheless, here it is used to have a
quality understanding of the temperature profile distributions.

FIG. 12. Steady temperature profiles in the Ziman hydrodynamic regime with
different λU and the same λN = 500 nm. The whole length is 5000 nm and nor-
malized to 1.
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(M1.3) To make the expression simpler, the Debye model is
assumed and the following approximation is adopted:

E0 ¼
ðωD

0

f0(ω)D(ω)�hωdω � 1
4

ðωD

0

f0(f0 þ 1)
�hω
kT0

D(ω)�hωdω: (33)

This equation is correct when temperature T0 is much lower
than Debye temperature TD.

Temperature and adiabatic boundary conditions are consid-
ered individually. Temperature boundary absorbs all the phonons
that arrive at the boundary and re-emits the phonons according to
the given temperature in equilibrium Bose–Einstein distribution.
Adiabatic boundary reflects all the phonons coming back and
keeps their frequency. If there is no resistance, all the phonons
emitting from the high temperature boundary can arrive at the low
temperature boundary so can the phonons from the low tempera-
ture boundary. However, when the phonons are scattered inside the

FIG. 13. The distribution of hydrodynamic thermal conductivity (a) and effective thermal conductivity (b) of the given material with different Knudsen numbers in Ziman
hydrodynamic heat transport and diffusive heat transport.

FIG. 14. Steady temperature distribution profiles in Poiseuille hydrodynamic heat conduction when (a) t = 1.0 and s = 0.0 and (b) t = 0.5 and s = 0.0.
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media, some phonons have been reflected to their original boun-
dary and then absorbed. Since the high temperature end has more
emitting phonons than the low temperature end, more phonons go
back to the high temperature end than the low temperature end.
Thus, the heat flux propagating from high temperature to low tem-
perature is reduced by these reflected phonons.

New scattering rules are given to these phonons. Based on the
assumption (M1.1), all the phonons can travel a constant length λN

before they are scattered. In this way, in the given finite volume, the
total phonon number is proportional to the phonons that are scattered
during a given time interval, and their relationship is expressed as

rs(ω) ¼ Pλf (ω), (34)

where rs, Pλ, and f are the phonon scattering distribution func-
tion, phonon scattering possibility function, and phonon density
function, respectively. Figure 19 shows the schematic of the par-
ticle propagation model at temperature boundary, where the
heat flux propagates from the left to the right and T1 > T2. Points
1, 2, and 3 are the center of the circle, and the radius of the
circle is λN. The rod is assumed to be isotropic and has a finite
length and infinite width.

As mentioned before, if the direction of the drift velocity is
assumed to be along with x coordinate and the phonon drift veloc-
ity is much smaller than their group velocity, the displaced Bose–
Einstein distribution fd is linearized as

f lineard (ω, ud) ¼ f0 þ �h
kBT

f0(f0 þ 1)K � ud: (35)

K and ud are the phonon wave vector and phonon drift velocity,
respectively. Then, the polar angle θ distribution is

f angled (θ) ¼ f0 sin θ þ �h
kBT

f0(f0 þ 1)Kud cos θ sin θ, (36)

where polar angle θ is defined as the angle between the phonon
velocity vector and x coordinate and fangle is the angle distribution
function of these phonons.

First, the temperature profile at the left boundary (high tem-
perature boundary) is analyzed. The phonons propagate forward,

FIG. 15. The steady temperature profile in Poiseuille hydrodynamic heat con-
duction when s = 0.1 at different transmissivity values t = 0.1, 0.3, 0.5, 0.7, and
0.9.

FIG. 16. Steady temperature profiles in Poiseuille hydrodynamic heat conduction at different specular reflectivity values s = 0.1, 0.3, 0.5, 0.7, and 0.9 when (a) t = 0.1 and
(b) t = 0.5.
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and then, they are scattered to redistribute their directions, leading
some phonons to go back. These phonons are absorbed by the
absorbing boundary, resulting in heat flux reduction. If all the
phonons starting from the boundary have been scattered, the
percent of phonons that turn back is constant, so that the heat flux
reduction does not depend on the regime length and the phonon
mean free path. Now, the thermal energy densities at points 1, 2,
and 3 are analyzed. Point 1, in the middle of the rod, can receive
the phonon scatterings from all directions. Thus, the total number
of phonons that are scattered at point 1 in the given time interval
has been counted around the whole circle, as shown in Fig. 19.
Since the travelling length of every phonon is constant, only the
phonons at the circle around point 1 (as shown in Fig. 19) can be
scattered. According to the first assumption, the phonon scattering
rate is proportional to the local thermal energy density. Point 1
owns the whole circle. However, as for point 2, which is near the
left boundary and satisfies x < l, not the whole perimeter of the
circle contributes to point 2, considering the arc in an imaginary
line. The critical angle of the circle area that can contribute to the
given position x2 (x2 < λave, λave is the phonon travelling length
which is constant) is

θc,2 ¼ arccos (
x2
λN

): (37)

The arc in the imaginary line is beyond the temperature boun-
dary, which contributes to point 2 with equilibrium Bose–Einstein
distribution and given boundary temperature. The energy density
distribution in the regime is denoted as E(x). According to the par-
ticle propagation principle, the energy density at point 2, E(x),

consists of the contribution from the circle area, which is

E(x) ¼ 1
2

ðωD

0

dω
ð2π
0

dβ
ðπ
π
2

f sin θD(ω)dθ

þ 1
2

ðωD

0

dω
ð2π
0

dβ
ðπ
π
2

f (f þ 1)
�hK
kT

ud cos θ sin θD(ω)dθ

þ 1
2

ðωD

0

dω
ð2π
0

dβ
ðπ2
θc,2

fleft sin θdθ: (38)

The integration with respect to β and ω is done first, and
Eq. (38) is transformed into

E(x) ¼ 1
2

ðπ
π
2

ExþλN cos θ sin θ þ 4ExþλN cos θ
ud
vg

cos θ sin θ

� �
dθ

þ 1
2

ðπ2
θc,2

Eleft sin θdθ: (39)

Eleft and Ex+λNcosθ are the energy densities at the left (high) temper-
ature boundary and at the points at the circle. E0 is the energy
density in the middle of the hydrodynamic nanofilm. In phonon
hydrodynamic heat transport, there is no temperature gradient in
the nanofilm center. The consequence of Eleft, Eright, and E0 is

Eleft . E0 . Eright : (40)

If we assume Ex+λNcosθ to be equal to E0, then Eq. (39) is
transformed into

E(x) ¼ 1
2

Eleft þ E0 � (Eleft � E0)
x
λN

� �

þ E0
ud
vg

x
λN

� �2

� 1

" #
: (41)

In this way, the temperature profile is depicted in a quadratic
function. However, this model makes many assumptions and, thus,
misses lots of details. It can only give qualitative predictions. When
x = 0, point 2 is located at the left boundary, and the energy density
is

E(x ¼ 0) ¼ 1
2
(Eleft þ E0)� E0

ud
vg

, (42)

corresponding to the nonequilibrium temperature T(x = 0). The
difference between T(x = 0) and T0 (ΔT = T(x = 0)− T0) is just the
so-called boundary temperature step. It can be found that at the
high-temperature boundary, the temperature step decreases with
higher drift velocity. When x = λN, the energy density is E0, com-
patible with the middle area of the rod.

FIG. 17. Temperature differences between the interface at different specular
reflectivities s and interface transmissivity t. The solid lines are the fitting func-
tions of the discrete points.
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In the same way, the energy density near the right boundary
can also be written as

E(L� y) ¼ 1
2

ðθc,3
0

EL�yþλN cos θ sin θ þ 4EL�yþλN cos θ
ud
vg

cos θ sin θ

� �
dθ

þ 1
2

ðπ
θc,2

Eright sin θdθ,

(43)

where y is the distance of point 3 from the right boundary. The

critical angle θc,3 is

θc,3 ¼ arccos � y
λN

� �
: (44)

If the energy density EL−y+λNcosθ is thought to be equal to E0,
this expression is simplified into

E(L� y) ¼ 1
2

Eright þ E0 þ (E0 � Eright)
y
λN

� �

þ E0
ud
vg

1� y
λN

� �2
" #

: (45)

The boundary energy density E(L) is

E(L) ¼ 1
2
(Eright þ E0)þ E0

ud
vg

, (46)

corresponding to temperature T(L). If the middle energy density E0
is equal to the average value of Eleft and Eright, which is thought to
be approximately correct,

E0 ¼ (Eleft þ Eright)

2
, (47)

the energy density differences at the boundary are equal,

E(0)� E0 ¼ E0 � E(L): (48)

The absolute values of boundary temperature steps at the two
boundaries are also equal. This particle propagation model tries to
explain hydrodynamic heat conduction resistance and the existence
of the boundary temperature step.

FIG. 18. Interfacial thermal resistance (a) and effective thermal conductivity (b) of the given material at different specular reflectivity s and interface transmissivity t.

FIG. 19. Schematic diagram of the particle propagation model. The circle repre-
sents the areas that contribute to the given points.
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The particle propagation model gives an easier way to under-
stand the heat flux reduction in phonon hydrodynamic heat con-
duction and the origin of thermal resistance due to the interactions
between phonon normal scattering and the boundary effect. If all
the phonons emitted from the boundary can arrive at the other
boundary without loss, which happens in the limit of ballistic
phonon transport, there is no heat flux reduction. However, the
phonon normal scattering process redistributes the phonon distri-
butions and alters its direction. Therefore, some phonons are
turned back to the original boundary, resulting in heat flux
reduction.

B. Dual boundary flux model

The second model is called the dual boundary flux model, and
it recognizes that there are two kinds of phonon fluxes in the
medium, similar to the classification from Sussmann.76 The first
one is the diffusive heat flux, where the phonons have no preferable
directions, obeying the equilibrium Bose–Einstein distribution. The
other is the hydrodynamic heat flux, where the phonon distribution
obeys the displaced Bose–Einstein distribution. There are three
assumptions in the dual boundary flux model. (M2.1) In the
central part of the nanofilm, there is only the hydrodynamic heat
flux. Nevertheless, at the boundary, only the diffusive heat flux is
generated. (M2.2) When the thermal energy propagates in the
medium from the boundary, the transition from the diffusive heat
flux to the hydrodynamic heat flux appears at the assumed expo-
nential rate. The transition corresponds to phonon distribution
transition from the non-collective distribution to the collective one.
(M2.3) The Debye model is adopted to make the expressions
simpler.

In the steady state, where the system variables do not change
with time anymore, the heat fluxes in the whole nanofilm are kept
constant. It is assumed that the diffusion heat flux from the boun-
dary has an exponential dissipative relation with distance, namely,

qdiff ¼ q0 exp � x
λ

� �
, (49)

where q0 is the heat flux at the boundary. As the total heat flux
does not change, the hydrodynamic heat flux increases,

qhydro ¼ q0 � qdiff ¼ q0 1� exp � x
λ

� �h i
: (50)

It can be understood in this way that the phonons from
the boundary belong totally to the diffusive heat flux, and then,
they are scattered and become one part of the hydrodynamic
heat flux. Take the area near the left (high temperature) boun-
dary, for example, according to the propagation directions, the
phonons are divided into two parts according to the polar
angle, namely, cos θ < 0 and cos θ > 0, named as negative direc-
tion phonons and positive direction phonons. The phonons
emitted from the left boundary are all positive direction
phonons and those absorbed by the boundary are negative
direction phonons. The positive direction phonons include both
the diffusive flux and the hydrodynamic flux, which implies
that the phonon distribution consists of both equilibrium Bose–

Einstein distribution and displaced Bose–Einstein distribution.
At point 2, the negative direction phonons are the backward
phonons that are scattered back. Therefore, they contribute to
the hydrodynamic heat flux, which obeys the displaced Bose–
Einstein distribution.

The phonons in different distributions result in different heat
fluxes although the total thermal energy is equal. As the positive
direction phonons, if these phonons are in the equilibrium Bose–
Einstein distribution, the heat flux is

qdiff ¼
ðωD

0
dω

ð2π
0
dβ

ðπ
2

0
f0(ω, θ, β)D(ω)�hωvg cos θ sin θdθ

¼ 1
2
E1vg : (51)

where E1 represents the thermal energy, satisfying

E1 ¼
ðωD

0
dω

ð2π
0
dβ

ðπ
2

0
f0(ω, θ, β)D(ω)�hω sin θdθ: (52)

However, if these phonons follow the linearized displaced
Bose–Einstein distribution, the heat flux is

qhydro ¼
ðωD

0
dω

ð2π
0
dβ

ðπ
2

0
f lineard (ω, θ, β)D(ω)�hωvg cos θ sin θdθ

¼ 1
2
E1vg þ 1

3
E2ud ,

(53)

where

E2 ¼
ðωD

0
dω

ð2π
0
dβ

ðπ
2

0
f0(1þ f0)

(�hω)2

kBT
D(ω)dθ ¼ 4αE1: (54)

When Debye temperature TD is much higher than T0,
α = 1. Otherwise, α < 1, because E2 and ud/vg > 0, qhydro > qdiff. It
is found that as for the positive direction phonons with the
same thermal energy, the displaced Bose–Einstein distribution
with positive drift velocity produces a higher heat flux than the
equilibrium distribution. In other words, to produce the same
heat flux, the diffusive heat flux in the equilibrium Bose–
Einstein distribution requires higher energy density than the
hydrodynamic heat flux in the displaced Bose–Einstein distribu-
tion,

q0 ¼ 1
2
Ediff vg ¼ 1

2
Ehydrovg þ 4

3
αEhydroud: (55)

For the negative direction phonons, it is the other way around.
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The thermal energy density ratio rE+ for phonons in the posi-
tive direction to produce the same heat flux is

rEþ ¼ Ediff
Ehydro

¼ 1þ 8
3
α
ud
vg

: (56)

The ratio for phonons in the negative direction rE− is

rE� ¼ Ediff
Ehydro

¼ 1� 8
3
α
ud
vg

: (57)

In the area near the left (high temperature) boundary, the heat
flux consists of the diffusive heat flux and the hydrodynamic heat flux,

q0 ¼ qhydro

¼ qhydroj cos θ,0 þ qdiff j cos.0 exp � x
λ

� �
þ qhydroj cos.0 1� exp � x

λ

� �h i
: (58)

At the nanofilm middle, only the hydrodynamic heat flux
exists. Therefore, the relationship between the phonon energy
density near the left boundary E(x) and that in the central part E0
can be written as

E(x) ¼ E0 � 2αE0ud/vg
2E0

E0

þ E0 þ 2αE0ud/vg
2E0

E0 1� e�
x
λ

	 
þ rEþe�
x
λ

� �
: (59)

Thus, the thermal energy difference is

ΔEleft ¼ E(x)� E0 ¼ 4
3
α
ud
vg

1þ 2α
ud
vg

� �
e�

x
λE0: (60)

The temperature difference or the boundary temperature step is
proportional to the thermal energy difference. From Eq. (60), the tem-
perature difference is related to the drift velocity and the steady energy
density. Moreover, it is expressed in an exponential function.

At the right boundary, the positive direction phonons are in
the displaced Bose–Einstein distribution, while the negative direc-
tion phonons are the mixture of the displaced Bose–Einstein distri-
bution and the equilibrium Bose–Einstein distribution,

q0 ¼ qhydroj cos θ.0 þ qdiff j cos,0 exp � y
λ

� �
þ qhydroj cos,0 1� exp � y

λ

� �h i
: (61)

The thermal energy near the right boundary E(L−y) is
expressed in the form of E0,

E(L� y) ¼ E0 þ 2αE0ud/vg
2E0

E0

þ E0 � 2αE0ud/vg
2E0

E0 1� e�
y
λ

� �
þ rE�e�

y
λ

h i
: (62)

Therefore, the energy density difference near the right boun-
dary is negative,

ΔEright ¼ E(L� y)� E0 ¼ � 4
3
α
ud
vg

1þ 2α
ud
vg

� �
e�

y
λE0: (63)

The dual boundary flux model focuses on the transition
between the diffusive heat flux and the hydrodynamic heat flux and
points out that the boundary temperature step appears near the
boundary because these two fluxes have different energy densities.
The boundary temperature step is important, no matter, for the
thermal resistance or the temperature predictions in micro- and
nano-structures. However, the assumed exponential transition rate
cannot be verified rigorously because it regards that the ballistic
phonons approach the equilibrium state only after scattering once.

C. Comparisons between the theoretical model and
simulations

The particle propagation model and the dual boundary flux
model are proposed in Secs. IV B and IV C to study the boundary
temperature step. However, since these models introduce some
assumptions, fitting parameters are required to match the results. It
is demonstrated that these theories depict the qualitative laws. To
match the results, several fitting parameters are introduced to these
two models, such as a, b, and c in the following equations:

E(x) ¼ 1
2

Eleft þ E0 � (Eleft � E0)
x
λN

� �

þ aE0
ud
vg

x
λN

� �2

� 1

" #
, (64)

E(L� y) ¼ 1
2

Eright þ E0 þ (E0 � Eright)
y
λN

� �

þ aE0
ud
vg

1� y
λN

� �2
" #

, (65)

ΔEleft ¼ E(x)� E0 ¼ 4
3
bα

ud
vg

1þ 2α
ud
vg

� �
e�

cx
λE0, (66)

ΔEright ¼ E(L� y)� E0 ¼ � 4
3
bα

ud
vg

1þ 2α
ud
vg

� �
e�

cy
λE0: (67)

Here, a is set to be 0.24 and b is 0.16. c is 2.2. These models are
compared with the hydrodynamic temperature profile with
λN = 1000 nm, as shown in Fig. 20. The particle propagation model
predicts a quadratic function, depicting the temperature increase in
the left boundary and the temperature decrease in the right

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 131, 064302 (2022); doi: 10.1063/5.0080688 131, 064302-20

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/jap


boundary. However, the exponential function predicted by the dual
boundary flux model seems to match the temperature profile
better. These models describe the transition from non-collective
distribution to collective distribution and the sources of thermal
resistance.

D. Theoretical models for the interfacial temperature
difference

Moreover, interfacial thermal resistance and its influences can
also be understood by the dual boundary flux model. When the
phonons meet the interface, some of them will be reflected while
the others continue propagating forward, where the portion is
determined by the interface roughness and material properties. The
interface transmissivity t is defined to characterize the phonon pro-
portion that can get through the interface. The transmissivity from
the left side to the right side t12 and the one from the right side to
the left side t21 can be different. If the materials at both sides of the
interface are the same, the transmissivity at both sides is equal. The
specular reflectivity s determines the ways that phonons are scat-
tered at the interface. When specular reflectivity s = 1, the phonons
meeting with the interface go back based on Fresnel’s law. When
s = 0, the phonons at the interface forget their previous state and
are re-emitted with new information about the phonon branch, fre-
quency, and wave vector. Similarly, the specular reflectivity of dif-
ferent interface sides might be different. Here, they are set to be
equal, s1 = s2. When t = 1 and s = 1, this model becomes the acoustic
mismatch model. When t = 1 and s = 0, the model reduces to the
diffusive mismatch model.

The dual boundary flux can be adopted to establish the hydrody-
namic interface model. The coarse interface means s = 0, and it emits
the phonons as the diffusive heat flux. When the interface transmissiv-
ity is equal to 1, the phonon energy density that passes the interface
can be written as the function of steady energy density E0,

qhydro ¼ qhydroj cos θ,0 þ (1� s)qdiff j cos θ.0 exp � x
λ

� �
þ sqhydroj cos θ.0 þ (1� s)qhydroj cos θ.0 1� exp � x

λ

� �h i
,

(68)

Eþ(x) ¼ E0 � 2αE0ud/vg
2E0

E0

þ E0 þ 2αE0ud/vg
2E0

E0 (1� s) 1� e�
x
λ

	 
þ (1� s)rEþe�
x
λ þ s

� �
:

(69)

At that time, the steady energy density E01 in medium 1 is set
to be equal to that in medium 2 E02. In the similar way, the
phonon energy density at the left side of the interface is

E�(x) ¼ E0 þ 2αE0ud/vg
2E0

E0

þ E0 � 2αE0ud/vg
2E0

E0 (1� s) 1� e�
x
λ

	 
þ (1� s)rE�e�
x
λ þ s

� �
:

(70)

The energy density difference between the left and right sides
of the interface is

ΔE ¼ E�(x)� Eþ(x) ¼ 8
3
α
vd
vg

1þ 2α
vd
vg

� �
(1� s)e�

x
λE0: (71)

In the above model, the interface transmissivity is set to be 1.
If not all the phonons can get through the interface and some go
back to the previous medium, it leads to the difference between E01
and E02 in the two separate nanofilms,

E01
E02

¼ 2� t
t

: (72)

Then, the energy difference at the interface is

ΔE ¼ (E01 � ΔE1)� (E02 þ ΔE2)

¼ (2� 2t)E0 � 4
3
α
ud,1
vg

1þ 2α
ud,1
vg

� �
(1� s)E1

� 4
3
α
ud,2
vg

1þ 2α
ud,2
vg

� �
(1� s)E2, (73)

where

E01 ¼ (2� t)E0, (74)

E02 ¼ tE0, (75)

E01ud,1 ¼ E02ud,2: (76)

When the phonon drift velocity is much smaller than the
phonon group velocity, Eq. (73) can be simplified into

FIG. 20. Comparisons of the steady temperature distribution profiles in hydrody-
namic heat conduction between the MC results and theoretical models.
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ΔE ¼ (2� 2t)E0 � 8
3
α
ud,1
vg

(1� s)(2� t)E0: (77)

This equation gives a linear relation between the energy
density difference and t, s. When t = 1 and s = 1, there is no differ-
ence. When s = 0 and t = 0, the difference reaches maximum.

V. CONCLUSIONS

Phonon hydrodynamic heat conduction, where the N process
dominates, predicts many interesting physical phenomena, such as
second sound and ultrahigh thermal conductivity.
Two-dimensional materials have relatively larger hydrodynamic
windows than bulk materials, where the N process plays an impor-
tant role. As it is known, the N process causes no thermal resist-
ance because it conserves the phonon momentum in heat
transport. However, it can influence the thermal conductivity indi-
rectly by the interactions with other mechanisms, such as the
Umklapp scattering process and boundary scatterings. This article
focuses on the boundary thermal behaviors and the interfacial
thermal resistance in phonon hydrodynamic heat conduction. If
the boundaries are thought to have ideal thermalized contacts,
phonons propagating from one end to the other end will experience
the transition from non-collective distribution to collective distribu-
tion, which results in thermal resistance. It is assumed that interfa-
cial behaviors can be seen as the sum of the interactions in two
separated nanofilms with the interface effects, which has been dem-
onstrated to be reasonable via numerical simulations. The hydrody-
namic interfacial thermal resistance is important in polycrystalline
structures and material connections.

The thermal resistance in a finite length nanofilm is presented
in two ways, namely, the hydrodynamic thermal resistance and the
effective thermal resistance, since there is no temperature gradient
in the middle part of the materials in steady hydrodynamic heat
conduction. The normal scattering process leads to different heat
conduction phenomena from ballistic heat transport. It is found
that the heat flux decreases when the Knudsen number goes down.
The boundary temperature step, denoting the temperature decline
near the boundary, is demonstrated to have different behaviors
under temperature boundary and heat flux boundary. Two theoreti-
cal models, i.e., the particle propagation model and the dual boun-
dary flux model, are proposed to predict the heat flux reduction
and temperature steps from different views. The particle propaga-
tion model considers the contribution of thermal energy distribu-
tion from the surroundings and derives a quadratic temperature
profile. The dual boundary flux model divides the fluxes into
hydrodynamic heat flux and diffusive heat flux and shows their dif-
ferent influences on heat conduction.

Due to the boundary temperature step, the interfacial thermal
resistance can no longer be determined only from the temperature
differences at the interface just as in diffusive heat conduction.
Therefore, hydrodynamic interfacial thermal resistance is used to
analyze the interface behaviors, which are characterized by the
interface transmissivity t and the specular reflectivity s. Moreover,
when the interface transmissivity t is large enough and specular
reflectivity approaches 0, inverse temperature difference appears,

where it seems that the heat flux flows from low to high tempera-
ture. The dual boundary flux model is capable of predicting the
temperature difference and the energy density difference at the
interface.

When Umklapp scatterings become stronger, it gives impor-
tant influences on the nanofilm thermal resistance and the whole
heat transport process turns to the Ziman hydrodynamic regime.
The coupled effects between the N and U processes can change the
temperature profile and the boundary temperature step. It is widely
applicable because pure Poiseuille hydrodynamic heat conduction
is difficult to realize in common circumstances. The resistance scat-
tering process always exists in nanoscale heat transport, such as
ballistic-diffusive heat transport. Therefore, the investigations of the
coupling effects of the N and U processes would benefit the heat
conduction management in two-dimensional materials.
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